Decidability of a conditional probability logic

Miodrag Rašković

(joint work with Zoran Ognjanović and Zoran Marković) University of Beograd Serbia

We prove decidability of a logic which enriches propositional calculus with the following classes of probabilistic operators which are applied to propositional formulas: $P_{\geq s}(\alpha)$, $CP_{\approx 1}(\alpha, \beta)$, $CP_{=s}(\alpha, \beta)$ and $CP_{\geq s}(\alpha, \beta)$, with the intended meaning "the probability of α is at least s", "probabilities of $\alpha \wedge \beta$ and β are almost the same" "the conditional probability of α given β is s", and "the conditional probability of α given β is at least s", respectively. Possible-world semantics with a probability measure on sets of worlds is defined. The range of the probability measure is chosen to be the unit interval of a recursive nonarchimedean field, making it possible to use the operator $CP_{\approx 1}$ to model default reasoning.